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Abstract

Fluid-¯uid mixtures often possess a ®ne structure, or morphology, whose length scale is much smaller
than the length scale over which the ¯ow ®eld and morphology vary. We de®ne a microstructural
variable called the area tensor, which describes the local morphology of such mixtures through volume-
averaged size, shape, and orientation characteristics. The area tensor is equivalent to the interface tensor
of the rheological model, and is closely related to the general microstructural tensors. The evolution
equation for the area tensor during laminar mixing is derived for the case of equal component viscosities
and negligible surface tension. Solution of this evolution equation requires a closure approximation for
estimating higher-order microstructural statistics. A closure approximation is generated based on exact
area tensor relations for ellipsoidal shapes, and is shown to provide highly accurate evolutions of the
area tensor. Area tensor histories are calculated in homogeneous elongational and shearing ¯ows, as
well as in temporally and spatially varying ¯ows. The results are shown to be consistent with well-
known mixing principles. # 1999 Elsevier Science Ltd. All rights reserved.
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1. Introduction

Laminar mixing of immiscible ¯uids occurs frequently in both natural and industrial
processes. Often the mixture assumes a structure which is very ®ne-scaled, such that the
characteristic size of the mixture structure is much less than the length scale of the overall
mixing domain. In such a case the mixture is said to possess a morphology. Examples of such
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mixing processes include blending of polymers, and tectonic shearing of inclusions in the
Earth's lower crust.

Due to the ®neness of the mixture structure, tracking the exact con®guration of each phase
throughout the entire mixture is impractical. Instead, we assume that each material point in the
mixture is associated with a ®nite volume whose characteristic size is much larger than the
characteristic length scale of the mixture structure, but is still smaller than the size of the
overall mixing domain. The mixture morphology at each material point is represented in terms
of some measure that summarizes the basic features of the microstructure within this local
volume. Since the volume is much smaller than the overall mixing domain, this local measure
can be treated as a ®eld variable, and is capable of re¯ecting spatial variations in morphology
over the mixing domain. For mixing analyses, we further assume that the characteristic size of
the averaging volume is small enough such that the velocity and deformation ®elds are
approximately linear within it. The evolution of the morphology can then be modeled by
predicting the change in the local morphological measure due to this velocity or deformation
gradient. We will call such an approach, which treats some local characteristic morphological
measure as a ®eld variable, a micromixing analysis.

The micromixing approach has been used extensively for modeling passive mixing, where
interfacial energy is negligible and the two phases have identical viscosities. In passive mixing
the global velocity ®eld can be found independently of the microstructure and then used to
evolve the mixture structure. Spencer and Wiley (1951) presented one of the earliest
micromixing analyses. They noted that many passive mixtures assume striated structures which
can be modeled by studying the evolution of passive material surfaces. They also established
that a fundamental process in mixing is the growth of interfacial area, and that the orientation
of this area relative to the ¯ow ®eld signi®cantly in¯uences mixing e�ciency. Mohr et al (1957)
de®ned speci®c area as a local measure of mixing, and found that it is the inverse of the
striation thickness for lamellar structures. They also showed that interfacial area grows linearly
in shearing ¯ows. Erwin (1978) demonstrated that much greater mixing e�ciency is possible in
extensional ¯ows, where interfacial area grows exponentially with deformation. Finally, Ottino
et al. (1981) and Chella and Ottino (1985) derived general formulas for the deformation of
lamellae in arbitrary deformation ®elds, essentially ``solving'' the problem of passive mixing for
lamellar structures.

The purpose of morphology modeling is to enable the prediction and control of mixture
properties. These properties include mixture rheology during processing, as well as mixture
appearance, permeability, and mechanical properties after processing. To predict many mixture
properties, the local size, orientation, and shape of the microstructure must be known. The
existing treatments of passive micromixing provide size and orientation information, but only
for lamellar structures. Real mixture morphologies are often not lamellar, forming droplets,
cylinders, and other shapes, either due to non-lamellar initial conditions or due to the presence
of interfacial tension. While passive mixing by de®nition excludes interfacial tension e�ects, the
development of a passive mixing model which can handle non-lamellar geometries is a
necessary precursor to the modeling of non-passive mixing. Therefore, there is a need for a
more general passive micromixing model, one which is capable of predicting size, orientation,
and shape information.
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In this paper we present a new approach for modeling passive micromixing. We introduce a
variable, called the area tensor, that represents the size, shape, and orientation of the local
morphology. We also provide an accurate and e�cient means to predict the evolution of this
variable during passive mixing, and show its applicability to predicting morphological gradients
in non-homogenous ¯ows. Finally, we demonstrate that the area tensor approach permits the
incorporation of other physical e�ects, such as interfacial tension, and therefore has great
promise for modeling non-passive micromixing as well.

2. Area tensors

2.1. De®nition of area tensors

Consider the mixture shown in Fig. 1, where the scale of the microstructure is su�ciently
®ne that exact modeling of the phases throughout the entire mixture is not feasible. We instead
associate some volume V with each material point P within the mixture. In accordance with
the micromixing approach, V is much smaller than the overall mixing domain, but larger than
the characteristic size of the microstructure. The morphology `at P' is then de®ned as the
morphology within V.
The morphology of a binary liquid mixture can be modeled by tracking the interface

between the two phases. One possible approach is to discretize the interface within V into an
array of di�erential elements, each with some area dS and unit normal vector nÃ . In order to
model the evolution of the morphology during ¯ow, the rotation, translation, and deformation
of each of these di�erential areas could be tracked. However, this strategy is computationally
expensive and, when modeled over the entire mixture, provides an overwhelming amount of
information.
A more e�cient and useful means of modeling microstructural evolution is to track selected

statistics of the interfaces associated with each material point. One such statistical
representation is the area tensor, which we de®ne as

A � 1

V

�
G
n̂n̂dS �1�

where the integral is taken over the entire interfacial surface G within the averaging volume V.

Fig. 1. Length scales in a ®ne-scaled mixture.
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(Bold lowercase letters represent vectors and bold uppercase letters represent second-order
tensors. Vectors with unit magnitude and second-order tensors with unit trace are indicated by
a hat, Ã ). This second-order area tensor is a local volume average of the dyadic product of each
normal vector with itself, and has units of surface area per unit volume.
It is possible to de®ne area tensors of any order, such as the fourth-order area tensor

A � 1

V

�
G
n̂n̂n̂n̂dS: �2�

(Fourth-order tensors are represented with the calligraphic font). Only the even-order area
tensors are useful because the components of odd-order area tensors are zero-valued when the
interfaces within V are closed surfaces. Throughout this paper the term ``area tensor'' refers to
the second-order area tensor unless otherwise stated.

2.2. Properties of area tensors

2.2.1. General characteristics
The area tensor contains considerable information about the local morphology of the

mixture, including the size, shape, and orientation of the microstructure.
The trace of the area tensor equals the total interfacial area per unit volume, also known as

the speci®c area SV

tr�A� � S=V � SV: �3�
In classical mixing theory the speci®c area has special signi®cance. Mohr et al. (1957) ®rst used

Table 1
Characteristics of special morphologies
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the striation thickness l (see Table 1), de®ned as one-half the spacing between layer midplanes
in a lamellar structure, as a measure of mixing. Striation thickness is related to the speci®c area
of a lamellar mixture by

l � 1

SV
: �4�

Speci®c area is a zeroth-order area tensor, containing only magnitude information. The second-
order area tensor extends this classical mixing measure to incorporate shape and orientation
e�ects.
It is convenient to de®ne a normalized area tensor AÃ as

Â � A=SV: �5�
Because the area tensor is real and symmetric, its principal values are real and its principal
directions are orthogonal. When rotated to its principal axis system, the normalized area tensor
is written as

�̂
A �

Â�1� 0 0

0 Â�2� 0

0 0 Â�3�

2664
3775 �6�

where the overbar denotes a rotated tensor. For uniqueness, we choose a rotation such that the
eigenvalues are numbered in order of decreasing magnitude,

Â�1�rÂ�2�rÂ�3�: �7�
The principal directions of the tensor indicate the most and least likely orientations for
interfacial area, and the eigenvalues of AÃ re¯ect the relative amounts of interfacial area
oriented in each principal direction.

2.2.2. Example area tensors
When the mixture has one discrete and one continuous phase, the area tensor provides

information about the shape and size of the discrete-phase domains. Table 1 shows the area
tensors for three example mixture morphologies. The area tensor is triaxial (isotropic) for
spherical domains, biaxial (transversely isotropic) for cylindrical domains, and uniaxial for
lamellar structures.
In the most general case, the volume fraction of discrete phase f could be modeled as a

spatially varying quantity that is advected with the ¯uid. For this study we will assume that the
mixture components are well distributed on large length scales, so that f is uniform
throughout the mixture. Such a situation arises in many polymer processing operations, where
the components are either well mixed as solid pellets before melting, or the pellets themselves
are pre-blended. We can then de®ne a local characteristic length scale Lc for the discrete phase
as the ratio of the total volume Vd of the discrete phase within V to the total interfacial area
Sd within V
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Lc � Vd=Sd � f=SV: �8�
Table 1 gives the characteristic length scales for the three example morphologies. The
characteristic radius of the lamellar structure is related to the striation thickness by r=f l.
It is also possible to interpret the area tensor in terms of the number density of discrete-

phase domains. For a monodisperse mixture, the number of domains per unit volume NV is
given by

NV � f=Vc � SV=Sc �9�
where Vc and Sc are the volume and surface area of a single domain with characteristic size Lc.
When there is no discrete phase, the area tensor is still well de®ned. Some mixtures form co-

continuous structures, like that shown in Fig. 2. A three-dimensionally random co-continuous
structure will have the same area tensor as a spherical structure, since the interface is
distributed isotropically in both morphologies. While the area tensor can represent either
structure, one cannot distinguish between the two structures solely on the basis of their area
tensors.

2.3. Ellipsoidal interpretation of area tensors

In passive micromixing the local deformation ®eld varies linearly with position, so that an
initially spherical discrete domain will deform into an ellipsoid for any state of strain. The area
tensor uniquely de®nes the size, shape, and orientation of such an ellipsoid. This characteristic
ellipsoid provides a convenient way to interpret the area tensor.
Consider a general ellipsoid with semiaxis lengths r1, r2, and r3,

z21
r21
� z22

r22
� z23

r23
� 1 �10�

where z1, z2, and z3 are coordinates along the principal axes of the ellipsoid. For convenience,
we number the axes so that r3rr2rr1. It is possible to solve exactly for the principal values of
the normalized area tensor in terms of the semi-axis ratios

C � r1
r3
; D � r1

r2
�11�

by integrating (1) over the surface of the ellipsoid. The axes of the ellipsoid, z1, z2, and z3, are

Fig. 2. A co-continuous microstructure.
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the principal directions of the tensor, so we need only consider the diagonal components of AÃ .
The resulting exact relationships are (Appendix A)

Â�1� � 1

1ÿD2

E�y; k� ÿD2F�y; k�
�1ÿ C2�E�y; k� � C2F�y; k� � CD

��������������
1ÿ C2
p ; �12�

Â�2� � D2

D2 ÿ C2

D2 ÿ C2

1ÿD2 F�y; k� ÿD2 1ÿ C2

1ÿD2 E�y; k�CD
��������������
1ÿ C2
p

�1ÿ C2�E�y; k� � C2F�y; k� � CD
��������������
1ÿ C2
p ; �13�

Â�3� � C2

D2 ÿ C2

C2E�y; k� � �D2 ÿ C2�F�y; k� ÿ CD
��������������
1ÿ C2
p

�1ÿ C2�E�y; k� � C2F�y; k� � CD
��������������
1ÿ C2
p �14�

where

k �
��������������
1ÿD2

1ÿ C2

r
; �15�

y � cosÿ1�C� �16�
and F(y,k) and E(y,k) are elliptic integrals of the ®rst and second kind, respectively, as de®ned
in Gradshteyn and Ryzhik (1994).
These exact relationships cannot be inverted analytically, and therefore cannot be used

directly to infer shape information from the area tensor components. However, we have found
that the semi-axis ratios are well approximated by

C �
�
Â�3�
Â�1�

�a

; D �
�
Â�2�
Â�1�

�a

�17�

with a=0.5977. The semi-axis ratio values from this approximation are exact for the limiting
cases of uniaxial, biaxial, and isotropic tensors, and they fall within 0.04 of the exact values for
all other ellipsoidal shapes.
The size scaling for a given area tensor is provided by its trace, or the speci®c area. For a

general ellipsoid, the exact characteristic length, as de®ned in (8), is

Lc � 2

3
r1

�
CD�

��������������
1ÿ C2
p

E�y; k� � C2��������������
1ÿ C2
p F�y; k�

�ÿ1
: �18�

A more tractable formulation for characteristic radius can be derived by using the
approximations for ellipsoidal surface area recommended by Lehmer (1950).

Lc � r1

�
2

5
�C�D� 1� � 3

5

�������������������������������
3�C2 �D2 � 1�

p �ÿ1
: �19�

This approximation is within 5% of the exact value of Lc for all possible ellipsoidal shapes.
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Using (8, 11, 17, 19), one can interpret any area tensor and discrete-phase volume fraction f
in terms of a representative ellipsoidal size and shape. The principal axes of A are the principal
axes of the ellipsoid.

2.4. Relationship to other microstructural variables

The local microstructure for suspensions of rigid, axisymmetric particles is frequently
described by a microstructural tensor M (Hinch and Leal, 1976), de®ned as

M � hp̂p̂i: �20�
Here pÃ is a unit vector parallel to the symmetry axis of each particle (Fig. 3). The angle
brackets denote an average over all the particles in the local averaging volume.
Similarly, the area tensor describes the local orientation distribution of the di�erential areas

which compose the interfacial surface. Each di�erential area is analogous to a thin disk with
area dS and an orientation axis de®ned by the normal nÃ . Unlike the identical rigid particles
which compose the tensor M, each di�erential area is weighted di�erently in the average
according to its magnitude dS. Since the di�erential areas are deformed by the ¯ow, the trace
of the area tensor can change, whereas the trace of the tensor M is ®xed.
Doi (1987) and others (Rosenkilde, 1967; Batchelor, 1970) have shown that in a blend of

immiscible ¯uids the contribution of the interfacial tension s to the extra stress is ÿsq ij, where
q ij is the interface tensor, de®ned as

qij � 1

V

�
G

�
ninj ÿ 1

3
dij

�
dS �21�

and d ij is the Kronecker delta. (In order to be consistent with the literature, here we relax the
convention that tensors must be capital letters.) In Doi and Ohta's rheological model for a
blend of two immiscible ¯uids with identical viscosity, the microstructure is described by the
interface tensor and by the total interfacial area per unit volume, Q in their notation. Their
model has demonstrated considerable potential for explaining the complex rheological behavior
of blends of immiscible ¯uids (Takahashi et al., 1994; Guenther and Baird, 1996; Vinckier et
al., 1996). Extensions to the theory have been proposed by Lee and Park (1994), retaining the
same microstructural variables.

Fig. 3. Collection of axisymmetric particles, each described by a unit vector pÃ .
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The interface tensor is directly related to the area tensor, since

Q �SV � Aii; �22�
qij �Aij ÿ 1

3
SVdij: �23�

The interface tensor is the deviatoric part of the area tensor, and Q is the hydrostatic part.
Thus, the Doi±Ohta model and its variations can be re-cast with the area tensor as the
microstructural variable.
The interface tensor is convenient for rheological models because of its direct relationship to

stress. For morphological modeling, the area tensor has the advantages that it contains both
q ij and Q in one quantity, and it is consistent with the microstructural tensors of Hinch and
Leal (1976). The latter feature will prove useful for the formation of a closure approximation
in Section 4, and should also facilitate development of area tensor±based property predictions.

3. Evolution equation

3.1. Passive mixing

Passive mixing involves two ¯uids with identical rheology and negligible interfacial tension.
Under these conditions the macroscopic and microscopic velocity ®elds are identical, and
interfaces rotate and stretch as material surfaces in response to the macroscopic velocity ®eld.
For a micromixing analysis, we assume that the size of the averaging volume V is small enough
that the velocity ®eld within V is approximately linear, and all interfaces within V deform
according to the velocity gradient tensor at the associated material point P. We can then
formulate an evolution equation for the area tensor at P based only on the velocity gradient
tensor at P. A similar argument holds for the formation of a ®nite strain equation for the area
tensor based on the local deformation gradient tensor.

3.1.1. Di�erential formulation
Using the de®nition of the area tensor, (1), and the chain rule, the rate of change of the area

tensor is

_A � 1

V

�
G

_̂nn̂dS� 1

V

�
G
n̂ _̂ndS� 1

V

�
G
n̂n̂ _dS �24�

where the dot signi®es a material derivative. For passive mixing Chella and Ottino (1985)
showed that the normal vector of a di�erential area rotates as

_̂ni � ÿLjin̂j � �Ljkn̂jn̂k�n̂i �25�
and, for an incompressible ¯uid, the magnitude of the di�erential area changes as

_dS � ÿ�Ljkn̂jn̂k�dS: �26�
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(When indicial notation is used, repeated indices imply summation.) Here L is the velocity
gradient tensor, L ij= @v i/@x j. Under the passive micromixing assumption, V is su�ciently
small that all di�erential areas within V experience the same velocity gradient. We can then
substitute (25, 26) into (24) which, after simpli®cation, yields the desired evolution equation for
the area tensor

_Aij � ÿLkiAkj ÿ AikLkj � LklAklij �27�
where A is the fourth-order area tensor de®ned in (2). Note that this equation is exact for
passive micromixing in any ¯ow ®eld, regardless of whether the mixture contains discrete
droplets, co-continuous phases, or has any other morphology.
Replacing the velocity gradient by the rate of deformation tensor E ij=(L ij+L ji)/2 and the

vorticity tensor Oij=(L ijÿL ji)/2 in (27) and rearranging yields

_Aij ÿ OikAkj � AikOkj � ÿ�EikAkj � AikEkj ÿ EklAklij�: �28�
The left-hand side of this equation is a co-rotating Jaumann derivative. The fact that the co-
rotating derivative is a function only of the microstructure and E guarantees that our evolution
equation satis®es the principle of coordinate frame indi�erence. Alternately, if (28) is
rearranged to isolate the term containing A on the right-hand side, then the left-hand side is
found to be the lower convected derivative of A.
Taking the trace of (28) yields a simple relation for the rate of area growth, an important

measure of mixing e�ciency,

_Aii � _SV � ÿEjkAjk: �29�
For lamellar structures this equation reduces to Chella and Ottino's expression for area
growth, (26). But unlike Chellaand Ottino's result, (29) applies to any geometric arrangement
of interfaces. Therefore, the area tensor is the fundamental quantity governing the rate of area
growth during passive mixing for all microstructures.
The exact evolution equation for the second-order tensor, (27), requires the fourth-order

tensor, which we do not track explicitly. Similarly, evolving the fourth-order tensor exactly
would require higher-order statistical information. The dependence of the second-order area
tensor evolution equation on higher-order statistics presents a closure problem, a common
feature of tensorial microstructural models. To evolve the second-order tensor on the basis of
second-order statistics alone, we can approximate the fourth-order tensor in terms of the
second-order tensor with a closure approximation. The derivation of an accurate closure
approximation for area tensor evolution during passive mixing is the focus of Section 4.

3.1.2. Finite strain formulation
In this section we explore the possibility of a ®nite strain area tensor evolution equation. The

assumption of passive interfaces guarantees the existence of a well-de®ned mapping between
the initial position x 0of a material point and its position x at any time during the ¯ow history.
In the vicinity of any point, this mapping is described by the deformation gradient tensor F,
de®ned as F= @x/@x 0.
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If the deformation gradient tensor acts on a di�erential area with initial magnitude dS 0and
normal vector nÃ 0, the di�erential area deforms to a new magnitude dS. The area stretch,
Z � dS=dS0, is given by

Z � det F

����������������������������
�FTF�ÿ1 � n̂0n̂0

q
: �30�

The deformation also causes the initial unit normal vector nÃ 0 to rotate to a new direction nÃ

according to

n̂ � 1

Z
�det F��Fÿ1�Tn̂0 �31�

(Chella and Ottino, 1985). Under the micromixing assumption, V is su�ciently small that all
di�erential areas within V experience the same deformation gradient. We can then substitute
(30, 31) into the de®nition of the area tensor, (1), and simplify to yield

A � �det F��Fÿ1�T
�
1

V

�
G

n̂0n̂0����������������������������
�FTF�ÿ1 � n̂0n̂0

q dS0

�
Fÿ1: �32�

For evolving area tensors, we seek a ®nite strain mapping of the initial area tensor A0,
de®ned as

A0 � 1

V

�
G
n̂0n̂0dS0 �33�

into the area tensor A for any deformation state F. However, (32) shows that such a
formulation is not possible in terms of F and A0 alone. This limitation is analogous to the
closure problem encountered in the di�erential formulation. However, unlike the di�erential
formulation, we know of no systematic method for approximating the ®nite strain evolution
equation in terms of the second-order area tensor alone. Furthermore, only the di�erential
formulation provides a means of incorporating rate e�ects associated with dispersion
phenomena. Therefore, only the di�erential formulation for area tensor evolution will be
pursued further.

3.2. Incorporation of additional process physics

An attractive feature of the rate formulation is that additional physical phenomena can
readily be incorporated into the model. For two ¯uids with identical viscosity the e�ects of
interfacial tension s can be represented by adding a term P to the evolution equation:

_Aij � ÿLkiAkj ÿ AikLkj � LklAklij � Pij: �34�
The Doi and Ohta (1991) rheological model contains a relaxation term of this type, through
which interfacial tension drives the microstructure to an isotropic state while decreasing the
speci®c surface area. That theory can be re-cast into the form of (34) by choosing
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Pij � ÿl� smS
2
V

��
Âij ÿ 1

3
dij

�
ÿ 1

3
m�dij

�
: �35�

Here m is the ¯uid viscosity, and l * and m * are constants related to the volume fraction of the
dispersed phase.
Doi and Ohta's original model has the undesirable feature that, for long times without ¯ow,

SV40. Lee and Park (1994) proposed modi®cations to the Doi-Ohta model that are intended
to correct the limiting behavior of the relaxation term, to account for unequal component
viscosities in stress calculations, and to model droplet break-up and coalescence. Their model
can similarly be cast into the form of (34) by choosing an appropriate expression for P (Wetzel
and Tucker, 1997a).
The di�erential form of the area tensor evolution equation provides a general framework

within which many models for additional process physics can be included. For the remainder
of this study we restrict our attention to mixtures with passive interfaces, so that P is
neglected.

3.3. Relationship to particle evolution equations

When a collection of rigid, axisymmetric particles is described by the microstructural tensor
of (20), the evolution equation (in the absence of Brownian motion) is (Hinch and Leal, 1976)

_Mij ÿ OikMkj �MikOkj � E�EikMkj �MikEkj ÿ 2EklMklij�: �36�
Here E is a constant that accounts for the particle shape, taking on the special values E=1 for
slender ®bers, and E= ÿ1 for thin disks.
Substituting E= ÿ1 into (36) yields an evolution equation for a collection of rigid disks. This

evolution equation is identical to the area tensor evolution equation (28) except for the factor
of two multiplying the fourth-order term in (36). This di�erence arises because the material
interfaces composing the area tensor can stretch (26), whereas the disk-like particles cannot.

4. Closure Approximation

The evolution equation for the second-order area tensor contains the fourth-order area
tensor, which is not calculated explicitly. In order to obtain a closed set of equations, a closure
approximation is needed to approximate the fourth-order tensor in terms of the second-order
tensor. An example of such an approximation is the quadratic closure (Doi and Ohta, 1991),
which can be written in terms of the normalized tensors Â and Â � A=SV as

Âijkl � ÂijÂkl: �37�
While (27) is exact for passive mixing, a closure approximation such as (37) can introduce
errors into the solution. Similar closure problems arise in other microstructural tensor models,
most notably in rigid-particle suspensions (Cintra and Tucker, 1995; Advani and Tucker, 1990;
Hinch and Leal, 1976) and liquid crystals (Chaubal et al., 1995; Ma�ettone and Crescitelli,
1994; Bhave et al., 1993). The methodology used here to create a closure approximation is

E.D. Wetzel, C.L. Tucker III / International Journal of Multiphase Flow 25 (1999) 35±6146



applicable to these other microstructural representations as well, although the actual closures

will di�er due to the di�ering physics governing the evolution of each microstructure.
Therefore we will only brie¯y overview the closure approximation here, and reserve a more

detailed treatment for a future publication (Wetzel and Tucker, 1998).

We begin by assuming that the fourth-order tensor will be approximated as a function of the
second-order tensor only. Closures can depend on other quantities, such as the rate of

deformation. However, such formulas lose their meaning when there is no ¯ow, and so are not
useful for predicting the in¯uence of microstructure on ®nal material properties. It will also be

convenient to work in terms of the normalized tensors AÃ and Â. From their de®nitions, these
tensors satisfy the relationships

Âii �1; �38�
Âijkk �Âij: �39�

Note that SV =tr(A), so the full fourth-order tensor is easily recovered once Â has been
approximated.

Cintra and Tucker (1995) showed that closure approximations based solely on the second-

order tensor will be objective only if the microstructure is assumed to be orthotropic, i.e. to
possess three orthogonal planes of symmetry. For orthotropic structures, the principal axes of

AÃ must be the symmetry axes of the approximate Â. Accordingly, formulating the closure
approximation in the principal axis system of the second-order tensor greatly simpli®es the

closure procedure. Implementing the closure during numerical simulations requires rotation of
these results back to the problem coordinates.

In the principal axis system, the fourth-order microstructural tensors of orthotropic

structures have the form

�̂Amn �

�̂A11
�̂A12

�̂A13 0 0 0

�̂A21
�̂A22

�̂A23 0 0 0

�̂A31
�̂A32

�̂A33 0 0 0

0 0 0
�̂A44 0 0

0 0 0 0
�̂A55 0

0 0 0 0 0
�̂A66

266666666666664

377777777777775
�40�

where the tensor is presented in contracted notation (e.g., Jones, 1975). The symmetry of the
fourth-order tensor reduces the number of independent components in (40) to six. A further

reduction, to three independent components, is provided by the normalization relationships in
(38, 39). A convenient choice for these three independent components is

Â�1� � �̂A11; Â�2� � �̂A22; Â�3� � �̂A33; �Â�1�rÂ�2�rÂ�3��: �41�
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These three scalar quantities must be functions of the eigenvalues of AÃ , of which only two are
independent due to (38). This reduces the general closure problem to the task of choosing three
scalar functions, each depending on two eigenvalues of the second-order tensor

Â�1� � f�1��Â�1�; Â�2��; Â�2� � f�2��Â�1�; Â�2��; Â�3� � f�3��Â�1�; Â�2��: �42�

To derive a speci®c closure for the area tensor we further assume that the distribution of
di�erential areas matches that of a speci®c orthotropic structure, the general ellipsoid. The
family of ellipsoids includes the limiting cases of spherical, cylindrical, and lamellar shapes
frequently observed in mixtures. More importantly, in passive mixing a ¯uid domain that is
ellipsoidal in one con®guration will deform into an ellipsoid for any deformation that is
homogeneous on the scale of the domain. Under these circumstances a closure based on
ellipsoidal shapes will be exact for any structure generated by passive mixing. This argument
also applies to any ellipsoidal distribution of area. For example, any complex structure which
is initially isotropic, even though it does not consist of spherical particles, will maintain an
ellipsoidal distribution of area for any deformation.
Equations (1, 2) show that the area tensor is a geometric quantity determined entirely by the

shape of the interface within the averaging volume. For ellipsoids, a given second-order area
tensor uniquely determines the shape of a corresponding ellipsoid, which in turn uniquely
determines the fourth-order area tensor for that ellipsoid. Therefore, ellipsoids possess an exact
closure relationship between the fourth-order and second-order area tensors. This relationship
can be expressed implicitly in terms of the axis ratios of the ellipsoid (11), where the second-
order components have already been given by (12±14) and the fourth-order components are
(Appendix A)

Â�i� � ai
bi1E�y; k� � bi2F�y; k� � bi3

��������������
1ÿ C2
p

�1ÿ C2�E�y; k� � C2F�y; k� � CD
��������������
1ÿ C2
p �43�

i=1 to 3 (no sum on i). The coe�cients a i and b ij are given in Table 2, and k and y are
de®ned by (15,16).
These exact relations cannot be rearranged to express the fourth-order tensor explicitly as a

function of the second-order tensor. Since the computational cost of the closure needs to be
low, we construct a convenient explicit function that closely approximates the exact closure
relationship. This approximation is generated by choosing a functional form, constraining the
form, and ®tting the constrained function to data generated from the exact closure. The
constraints force the closure to obey geometric symmetries, give exact results in the three
limiting cases of Table 1, and have correct asymptotic behavior near those limits (Wetzel and
Tucker, 1998).
Exact data for Â�1�; Â�2�, and Â�3� as a function of AÃ(1) and AÃ(2) were generated using (12, 13,

43) for 127 ®tting points encompassing the complete range of ellipsoidal shapes. The closure
that we will use here is a third-order/second-order rational polynomial in terms of AÃ(1) and
AÃ (2), having the form
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Â�m� � P�Â�1�; Â�2��
Q�Â�1�; Â�2��

;

P�Â�1�; Â�2�� �c�m�1 � c�m�2Â�1� � c�m�3Â�2� � c�m�4Â�1�Â�2� � c�m�5Â2
�1�

�c�m�6Â2
�2� � c�m�7Â2

�1�Â�2� � c�m�8Â�1�Â2
�2� � c�m�9Â3

�1� � c�m�10Â3
�2�;

Q�Â�1�; Â�2�� �1� c�m�11Â�1� � c�m�12Â�2� � c�m�13Â�1�Â�2� � c�m�14Â2
�1� � c�m�15Â2

�2�:

�44�

The ®tted coe�cients c (m)n are given in Table 3. The procedure for calculating the remaining
terms of (40) and rotating the tensor to the proper coordinate space is detailed elsewhere
(Cintra and Tucker, 1995; Wetzel and Tucker, 1997). We will refer to this closure
approximation as the RE, or rational ellipsoidal, closure. (The exact numerical values of the
coe�cients di�er slightly from those reported by Wetzel and Tucker (1997) due to the use of
di�erent ®tting data.)

Table 2
Coe�cients for (43)

i=1 i=2 i=3

a i

1

�1ÿ C2��1ÿD2�2
D2

�1ÿD2�2�D2 ÿ C2�2
C2

�1ÿ C2��D2 ÿ C2�2

b i1 (1+ C 2+D 2ÿ3C 2D 2) D 2(1ÿ C 2)(ÿ3C 2+D 2+D 4+C 2D 2) C 2(C 2ÿ3D 2+C 4+C 2D 2)

b i2 (ÿC 2ÿ2D 2+3C 2D 2) D 2(D 2ÿC 2)(3C 2ÿ2D 2ÿC 2D 2) C 4(D 2ÿC 2)
b i3 ÿCD(1ÿ D 2) CD(1ÿ D 2)(2C 2ÿD 4ÿC 2D 2) CD(2D 2ÿC 4ÿC 2D 2)

Table 3

Closure coe�cients c (m)n for the RE closure, (44). The horizontal line separates numerator and denominator
coe�cients

n m=1 m=2 m=3

1 0.1433751825 0.1433751825 0.9685744898
2 ÿ0.6566650339 ÿ0.5209453949 ÿ2.5526857671
3 ÿ0.5106016916 ÿ0.6463213306 ÿ2.5756669706
4 4.4349137241 2.3303190917 4.4520903005
5 3.5295952199 0.6031924921 2.2044050704
6 0.1229618909 5.1539592511 2.2485545147

7 ÿ5.5556896198 ÿ1.6481269200 ÿ1.8811803355
8 ÿ2.8284365891 ÿ5.4494528976 ÿ1.9023485762
9 ÿ2.9144388828 ÿ0.2256222796 ÿ0.6202937932
10 0.2292109036 ÿ3.7461520908 ÿ0.6414620339

11 0.7257989503 0.6916858207 ÿ1.2134964928
12 3.0941511876 3.1282643172 ÿ1.2128608265
13 ÿ4.7303686308 ÿ4.7303686308 0.6004510415

14 ÿ1.6239324646 ÿ1.5898193351 0.2393747647
15 ÿ3.1742364608 ÿ3.2083495904 0.2162486576
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As a measure of the quality of the ®t, we use the rms error among six ®tted components
(

�̂Amm; 1RmR6, no sum on m) and all 127 data points. For the RE closure this error is
1.5� 10ÿ4. (The components of Â are all order one.) In contrast, the quadratic closure of (37)
has an rms error of 7.0� 10ÿ2. Additionally, the quadratic closure does not match the exact
fourth-order tensor values for spherical and cylindrical morphologies.

5. Microstructural evolution in ¯ow ®elds

In this section we demonstrate the accuracy of the RE closure for modeling area tensor
evolution. We also compare area tensor results with classical mixing principles, and
demonstrate the interpretation of area tensors in terms of representative ellipsoids.
Additionally, we illustrate the use of the area tensor as a ®eld variable by modeling
morphology development in steady ¯ow between parallel plates.

5.1. Generation of reference data

Reference data for testing the accuracy of the tensor results was generated using a
Lagrangian approach (Szeri and Leal, 1992, 1994). At a single material point the
microstructure is represented by a large number of di�erential areas, each of which evolves
during ¯ow according to (25, 26). This scheme provides an exact rate of change for each area
vector, without a closure approximation. The second- and fourth-order area tensors are
reconstructed at any desired time by summing the contributions from each area vector. If area
vector m has normal nÃ m and magnitude dSm, the reconstructed area tensors are

Aij � 1

V

X
m

nmi n
m
j dS

m;

Aijkl � 1

V

X
m

nmi n
m
j n

m
k n

m
l dS

m:

�45�

We advance the vector evolution equations numerically using a fourth-order Runge±Kutta
method with adaptive step-sizing. Numerical errors are minimized by working in double
precision and placing low error tolerances on the stepping algorithm. Discretization errors are
minimized by using approximately 100,000 area vectors over a hemisphere of orientation space.
In the results that follow, the maximum deviation of any component of AÃ from the exact result
is less than 10ÿ5, where the components of AÃ are all of order one.
Generating an array of di�erential areas to produce an initially isotropic area distribution is

not straightforward. The spherical orientation space was discretized into a triangular mesh,
with a normal vector de®ned through the centroid of each triangular mesh element. Each
normal vector was then assigned an initial area dSm proportional to the surface area of its
associated spherical triangle (Wetzel and Tucker, 1997). The resulting array of area vectors
produced fourth-order components Âijkl within 10ÿ6 of the exact isotropic values.
While the Lagrangian approach gives highly accurate results without using a closure

approximation, it is much more expensive computationally than the tensorial approach. For
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example, generating reference data that was su�ciently accurate to determine the errors in the
RE closure required storage and calculation of 300,000 scalars for each material point. The
second-order area tensor summarizes this information using just 6 scalar components. This
economy is multiplied many times over in a ®eld problem, where one tracks the microstructure
at many points within the ¯ow ®eld.

5.2. Accuracy of closures in homogeneous ¯ows

We ®rst test the area tensor and its closure approximations in homogeneous ¯ows, where
both the microstructure and the velocity gradient are independent of position. This reduces
(27) to a set of ordinary di�erential equations for the area tensor components. Area tensor
histories were generated by integrating (27) in time, using a fourth-order Runge±Kutta method
with adaptive step-sizing. In all cases, the initial condition was an isotropic area tensor with
unit trace.
These closure-based results were compared to the reference results described in the previous

section. To evaluate the accuracy of the closure approximations we de®ne an error tensor E ij as

Eij �
Aref

ij ÿ Aclosure
ij

tr�A�ref : �46�

A convenient scalar measure of the error is

E �
�����������
1

2
EijEji

r
�47�

and for transient ¯ows we report the average of this quantity over time,

Eavg � 1

tf

�tf
0

E�t�dt: �48�

Table 4 summarizes the results of this study, showing the average error for the RE and
quadratic closure approximations in various ¯ows. We next examine in more detail the
behavior of the biaxial stretching, simple shear, and combined stretching/shearing ¯ow. The
behavior in uniaxial elongation is similar to that in biaxial elongation, and will not be
discussed further.

5.2.1. Biaxial elongation
For biaxial stretching along the x 2 and x 3 axes, the velocity gradient tensor is

Lij � @vi
@xj
�
ÿ2B 0 0
0 B 0
0 0 B

24 35: �49�

Due to symmetry, A 22=A 33 and all o�-diagonal tensor components equal zero in this
problem. Fig. 4(a) and (b) show the initial evolution of the A 11 and A 22 components in this
¯ow. Most of the area rotates to lie in the 2±3 plane, where it stretches rapidly. A 11 soon
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becomes the largest component of A, and continues to grow rapidly with time. Conversely, A 22

decays rapidly and, after a short time, very little area is normal to the x2 axis. The RE and
quadratic closures both exhibit correct qualitative behavior in this ¯ow, though the
quantitative accuracy of the RE closure is much better, as shown in Table 4.
The area tensor at Bt=1.4 is

A �
8:22 0 0
0 0:00812 0
0 0 0:00812

24 35: �50�

If the initial area tensor represented a sphere of unit radius, then using (17) and assuming
constant volume, this area tensor represents an oblate spheroid of minor semi-axis r1=0.063
and major semi-axes r2= r3=4.0.
Fig. 5 shows the trace of A in biaxial elongational ¯ow. After an initial transient, the trace

of A, which measures the speci®c area of the mixture, grows exponentially with time. This
behavior is consistent with the well-known mixing principle that elongational ¯ows produce
exponential growth in surface area (Erwin, 1978). Using the observation that in biaxial
stretching the area tensor becomes uniaxial at large strains, (29) simpli®es to _SV � 2SVB or

Fig. 4. Evolution of initially isotropic area tensor in biaxial elongation. Note the di�erent vertical scales on the plots.

Table 4
Average errors of RE and quadratic closures in homogeneous ¯ows

Flow Final strain E avg, RE E avg, Quadratic

Uniaxial elongation Ut=1.4 2.6� 10ÿ5 2.1�10ÿ2

Biaxial elongation Bt=1.4 1.5� 10ÿ4 9.5�10ÿ2

Simple shear Gt=7.0 1.4� 10ÿ4 9.5�10ÿ2

Three-stage ¯ow (see (55)) Gt=30 1.7� 10ÿ3 1.1�10ÿ1
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SV=S
0
V � exp�2Bt� �51�

which agrees with the limiting behavior of Fig. 5.
Both the RE and quadratic closures exhibit correct asymptotic behavior for large biaxial

strains. However, the quantitative accuracy of the two closures is quite di�erent. For large
strains, the relative error in the trace, de®ned as [tr(A)closureÿtr(A)ref]/tr(A)ref, reaches a steady
value of 1.6� 10ÿ1 for the quadratic closure and 1.0� 10ÿ4 for the RE closure. (The
logarithmic scale of Fig. 5 obscures these di�erences in accuracy.)

5.2.2. Simple shear
Fig. 6(a)±(d) show the evolution of the area tensor during a simple shear ¯ow, in which the

velocity gradient is

Lij �
0 G 0
0 0 0
0 0 0

24 35: �52�

By symmetry, A 23=A 31=0 in this ¯ow.
In this ¯ow, most of the area rotates to have a normal vector close to the x2 axis, so A 22

becomes the largest component of the area tensor. Again, assuming that the initial area tensor
corresponds to a sphere of unit radius, the area tensor at Gt=7.0,

A �
0:0717 ÿ0:480 0
ÿ0:480 3:44 0

0 0 0:165

24 35 �53�

corresponds to an ellipsoid with principal semi-axes of length r3=7.6, r2=0.90, and r1=0.15.
The r3 axis lies in the x1±x2 plane and is oriented 8.08 above the x1 axis.

Fig. 5. Exponential growth of tr(A) during large-strain biaxial elongation.
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Fig. 6(a)±(d) and Table 4 show that the RE closure is much more accurate than the
quadratic closure in simple shear. Both closures exhibit linear growth of tr(A) at large strains,
consistent with the classical mixing principle that shearing ¯ows produce linear growth in
interfacial areas (Mohr et al., 1957). (The plot of tr(A) vs time is essentially identical to
Fig. 6(b), since A 22 dominates the trace at large times.) However, the quadratic closure gives
an incorrect rate of growth. This is a serious limitation of the quadratic closure, since many
mixing devices use very large shear strains. The exact rate of area growth can be calculated
using (29), which for simple shear, simpli®es to _SV= ÿ GA 12. Using the ®nite deformation
equation (32), it can be shown (Wetzel, 1997) that at large strains A 12/SV

0 approaches a value
of ÿ1/2 for an initially spherical domain. This result leads to the linear area growth law

SV=S
0
V � 1� �Gt�=�2S0

V�: �54�

Fig. 6. Evolution of initially isotropic area tensor in simple shear. Note the di�erent vertical scales on the plots.

E.D. Wetzel, C.L. Tucker III / International Journal of Multiphase Flow 25 (1999) 35±6154



5.2.3. Three-stage ¯ow
A more demanding test is provided by a three-stage ¯ow, where

Lij �
0 G 0

0 0 0

0 0 0

264
375 for 0 < GtR10;

Lij �
ÿU 0 0

0 ÿU 0

0 G 2U

264
375 for 10 < GtR20;

Lij �
2U 0 0

0 ÿU 0

0 G ÿU

264
375 for 20 < GtR30

�55�

and G=20 U. The ®rst stage is simple shear, the second stage combines simple shear with
uniaxial elongation, and the third stage is identical to the second except that the direction of
elongation has been changed. Fig. 7(a)±(f) show the A 11, A 22, A 33, A 23, A 13, and A 12

components for the ¯ow. The accuracy of the RE closure is excellent over all six tensor
components and during the entire ¯ow history, while the quadratic closure develops some
signi®cant errors.

5.3. Application to a ®eld problem

To illustrate the applicability of the area tensor to ®eld problems, we consider steady
pressure-driven ¯ow between parallel plates as shown in Fig. 8. For a gap height of 2H and
centerline velocity v c, the Newtonian velocity pro®le is

v1�x2� � vc�1ÿ �x2=H�2� �56�
with x1 the ¯ow direction and x2 the gapwise direction. Material points move along streamlines
of constant x2, and a material point at any position x1 has a residence time of t= x1/v1. The
shear rate,

G � ÿ @v1
@x2
� vc

2x2
H2

�57�

is independent of x1, so at steady state any point (x1, x2) in the ¯ow ®eld has accumulated a
shear strain g equal to

g � Gt � 2x1x2

�H2 ÿ x22�
�58�

since entering the ¯ow. In Section 5.2.2 we calculated area tensor evolutions in simple shear
¯ow as a function of strain [Fig. 6(a)±(b)]. Using (58), we can map these results from a
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Fig. 7. Evolution of initially isotropic area tensor during three-stage elongational/shear ¯ow.
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function of strain to a function of position in the strip ¯ow geometry. The resulting area tensor
®eld represents the steady-state microstructure for the ¯ow.
The velocity at the wall is zero, so the residence time and accumulated strain there are

in®nite. In practice, either di�usion or dispersion will become important in a thin boundary
layer near the wall, or else the process will not reach steady state in this zone. We ignore this
detail, and only plot data up to x2=0.95 H.
Fig. 9(a) and (b) show results for the upper half of a channel of aspect ratio L/H=20 and

an isotropic inlet condition with SV=1. The contours indicate the logarithm of the trace of
the tensor, a measure of morphological length scale. Larger values of SV indicate a ®ner
microstructure. The vectors indicate the orientation and anisotropy of the morphology, with
longer vectors representing highly aligned morphologies and dots representing morphologies
which are isotropic in the x1±x2 plane. At the midplane the shear rate is zero and the inlet
microstructure is transported with no deformation. The trace of the area tensor increases

Fig. 8. Geometry for strip ¯ow. The upper half of the domain is plotted in Fig. 9(a) and (b).

Fig. 9. Steady state area tensor distribution for strip ¯ow. Region plotted is upper half of domain shown in Fig. 8:
(a) contours of log SV; (b) principal direction and anisotropy of A. Vectors point in direction of largest eigenvalue
of A. The vector length is proportional to the di�erence in magnitude between the two eigenvalues in the x1±x2
plane. A unit length vector indicates a uniaxial tensor, while a dot (a vector of zero length) indicates an in-plane
isotropic tensor.
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toward the channel walls, because of higher shear rates and longer residence times, and also
increases in the ¯ow direction, due to increasing magnitude of accumulated shear. The tensor
also becomes highly oriented and dominated by the A 22 term toward the edges and the outlet
of the channel.
The area tensor at x2=0.95 H at the exit is nearly uniaxial with a trace equal to 195.1, so

we can treat this as a lamellar structure. Using (8) and Table 1 with a dispersed-phase volume
fraction f=0.10, this tensor represents a lamellar morphology with an average sheet thickness
of 1.0�10ÿ3. At the exit midplane, the triaxial tensor with SV=1 corresponds to a spherical
geometry with a characteristic radius of 0.30. These results agree qualitatively with the ``skin-
core'' e�ect observed experimentally in injection-molded polymer blends (Fellahi et al., 1996),
and demonstrate the highly localized morphology that can develop during even simple non-
homogeneous ¯ows.

6. Conclusions

Mixtures whose microstructure is too small to resolve exactly in a numerical simulation can
be modeled using average measures of the local morphology. For this purpose we have de®ned
the area tensor, which provides information on the size, shape, and orientation of the
microstructure. This information is necessary both for accurate simulation of mixing and for
prediction of many mixture properties. In mixtures containing geometrically complex
interfaces, the area tensor is directly (and exactly) related to the rate of area growth in passive
mixing, and to the interfacial tension contribution to the extra stress. Therefore, the area
tensor is both a convenient expression of mixture structure, as well as a fundamentally
signi®cant quantity that governs mixing dynamics and rheological behavior.
We have derived an evolution equation for the second-order area tensor that is exact for

passive mixing. This rate equation contains the fourth-order area tensor, which can be
approximated in terms of the second-order area tensor. We have formulated such a closure
approximation, by assuming that any morphology can be represented by a prototype ellipsoid.
An exact implicit closure relationship has been derived for ellipsoidal microstructures, and
approximated with an explicit rational polynomial function. This explicit closure
approximation (the RE closure) is very accurate, and allows one to use the second-order area
tensor as a microstructural state variable in mixing ¯ows without introducing signi®cant errors.
The area tensor model successfully captures the classical mixing behaviors of exponential

interfacial area growth in elongational ¯ows and linear growth in simple shear ¯ow. However,
the area tensor model supplements this magnitude information with information on the shape
and orientation of the interfaces. The di�erential form of the area tensor evolution equation
allows modeling the area tensor in any ¯ow whose velocity ®eld can be resolved locally as a
function of time. This capability has been demonstrated by solving for the steady
morphological ®eld for initially spherical domains subjected to ¯ow between parallel plates.
The calculation predicted morphological gradients, due to the di�erences in shear rate and
residence time experienced by di�erent material points. These results agree qualitatively with
experimental results, and demonstrate the value of the local morphological descriptions
provided by the area tensor method.
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The purpose of this study is to present a general framework by which a variety of processes
and physics can eventually be modeled. The area tensor results presented here model mixtures
with passive interfaces, which is the simplest implementation of this framework. However, the
evolution equation has been presented in a general form which allows incorporation of
additional process physics. Phenomena that might be added to this framework include surface
tension±driven relaxation, surface tension±driven breakup, and coalescence, as well as the
in¯uence of unequal component viscosities. Many other opportunities exist for the
advancement of this approach, including application of the area tensor approach to complex
¯ows and geometries using numerical methods, direct coupling between the morphology and
rheology in a ¯ow simulation, and the development of relations between the area tensor and
physical properties such as rheology, permeability, and sti�ness.

Appendix A Derivation of exact area tensor relations

For the general ellipsoid de®ned by (10) the components of the unit vector nÃ normal to the
surface are

n̂1 � cos y������������������������������������������������������������������������������������
C2 sin2 y cos2 f�D2 sin2 y sin2 f� cos2 y

q ; �A:1�

n̂2 � D sin y sinf������������������������������������������������������������������������������������
C2 sin2 y cos2 f�D2 sin2 y sin2 f� cos2 y

q ; �A:2�

n̂3 � C sin y cosf������������������������������������������������������������������������������������
C2 sin2 y cos2 f�D2 sin2 y sin2 f� cos2 y

q �A:3�

and the incremental area dS is

dS � r21
1

CD
sin y

������������������������������������������������������������������������������������
C2 sin2 y cos2 f�D2 sin2 y sin2 f� cos2 y

q
dydf �A:4�

where

z1 � r1 cos y; z2 � r2 sin y sinf; z3 � r3 sin y cosf �A:5�
and the axis ratios C and D are de®ned in (11). Substituting these relations into the de®nition
of the second-order area tensor, (1), yields

A22 � 1

V

�2p
0

�p
0

r21�D=C� sin3 y sin2 f�����������������������������������������������������������������������������������
C2 sin2 y cos2 f�D2 sin2 y sin2 f� cos2y

q dydf �A:6�

A33 � 1

V

�2p
0

�p
0

r21�C=D� sin3 y cos2 f������������������������������������������������������������������������������������
C2 sin2 y cos2 f�D2 sin2 y sin2 f� cos2 y

q dydf: �A:7�
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The integrals can be performed using the transformations of Maas (1992). The normalized area
tensors AÃ22 and AÃ33 are found by dividing (A6, A7) by the surface area of an ellipsoid, given
by Legendre (1811) as

Sellipsoid � 2pr21
DC

1��������������
1ÿ C2
p ��1ÿ C2�E�y; k� � C2F�y; k� � CD

��������������
1ÿ C2
p

� �A:8�

to yield (13, 14), where the arguments k and y are de®ned in (15, 16). Equation (12) results
from the normalization condition, (38).
Similarly, substituting (A.1±A.4) into the de®nition of the fourth-order area tensor, (2),

yields

A1111 � 1

V

�2p
0

�p
0

r21�1=CD� sin y cos4 y
�C2 sin2 y cos2 f�D2 sin2 y sin2 f� cos2 y�3=2 dydf; �A:9�

A2222 � 1

V

�2p
0

�p
0

r21�D3=C� sin5 y sin4 f
�C2 sin2 y cos2 f�D2 sin2 y sin2 f� cos2 y�3=2 dydf; �A:10�

A3333 � 1

V

�2p
0

�p
0

r21�C3=D� sin5 y cos4 f
�C2 sin2 y cos2 f�D2 sin2 y sin2 f� cos2 y�3=2 dydf: �A:11�

Solving these integrals using the transformations of Maas (1994) and normalizing by (A.8)
yields the exact fourth-order area tensor relations of (43).
More detailed derivations of all of these relations are given in Wetzel and Tucker (1997).
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